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Abstract. The interband resonant magnetotunnelling processes in double-barrier structures made
from A3B5 materials in a magnetic field normal to the interfaces are investigated theoretically. The
multiband Kane model and transfer-matrix method are used to obtain the wavefunctions of particles
in a heterostructure taking into account the mixing at the interfaces of the states corresponding to
different Landau levels due to the spin–orbit interaction. The dependencies of the transmission
coefficients for the transitions between the states of the various Landau levels on the incident particle
energy and the dependencies of the tunnelling current density on the voltage for different values
of magnetic field are investigated. It is shown that the interband transitions between the states
with different Landau-level indices result in the additional peaks of the theoretical current–voltage
characteristics of resonant tunnelling structures (RTS) such as the InAs/AlGaSb/GaSb RTS.

1. Introduction

In the resonant tunnelling structures (RTS) with type II heterojunctions such as the
InAs/AlSb/GaSb RTS with a GaSb quantum well and the GaSb/AlSb/InAs RTS with an InAs
quantum well, the interband tunnelling of electrons through the quasibound states in the valence
band quantum well, or holes from GaSb through the quasibound states in the conduction band
quantum well, occurs. These interband RTS show fairly high values of the peak-to-valley
current ratio at room temperature and have attracted considerable attention from researchers
(see, for example, references [1–17]). In papers [3–5, 7] the interband magnetotunnelling
in RTS made from InAs, AlSb, and GaSb was investigated experimentally. In a strong
magnetic field normal to the interfaces, interband tunnelling current oscillations versus voltage
were observed, conditioned by the interband resonant tunnelling through different Landau
levels [3,4]. Applying a magnetic field parallel to the interfaces results in a considerable shift
in the peak voltage [7]. The interband resonant magnetotunnelling with the magnetic field
parallel to the interfaces was considered theoretically in reference [15] using the eight-band
model. In reference [14] the current–voltage (I–V ) characteristics of interband RTS with the
magnetic field parallel to the current were calculated using the simplified two-band model.
The authors of reference [15] neglected the quantization of the particle spectrum in a magnetic
field. In reference [14] this effect was taken into account, but the effect of inter-Landau-level
transitions was not considered. The aim of this paper is to investigate theoretically the interband
resonant magnetotunnelling in heterostructures in a magnetic field normal to the interfaces,
taking these effects into account.

The transmission coefficients and tunnelling current-density components corresponding to
the processes of interband tunnelling from the states of each Landau level, with conservation
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and with change of the Landau-level indexn, were calculated using the eight-band Kane
model [18] and the transfer-matrix method [19, 21]. The latter processes can occur without
scattering because of the mixing of the states corresponding to different indicesn at the
interfaces due to the spin–orbit interaction [22]. We show that in the InAs/AlGaSb/GaSb RTS
the current density due to the interband transitions with a changing Landau-level index may be
comparable with the current density due to the interband transitions with conservation of the
Landau-level index, which leads to the additional peaks in the theoreticalI–V characteristics
of these RTS.

The inter-Landau-level tunnelling processes of electrons or holes were observed exp-
erimentally, when investigating the peculiarities of theI–V characteristics of the structures
with intraband tunnelling mechanisms [23–27]. These peculiarities (the oscillations of the
I–V characteristics or the oscillations of the corresponding second derivatives d2I/dV 2

versus voltage) for values of the external bias higher than that corresponding to the main
peak of the current density were explained as arising due to inter-Landau-level elastic- and
inelastic-scattering-assisted tunnelling processes. The authors of references [3, 4] explained
the oscillations of theI–V characteristics of the interband RTS as arising due to intra-Landau-
level tunnelling processes. They associated the small additional peak at 15 T with circuit
instabilities. We believe that some of the additional peaks of the current or second derivative
d2I/dV 2 may be associated with the tunnelling processes with a changing Landau-level index
without scattering.

2. Model description

We use thek · p method and take into account the coupling of the conduction band with the
light- and heavy-hole bands and with the split-off band exactly, and neglect the higher bands, to
investigate the interband magnetotunnelling processes in RTS such as an InAs/AlGaSb/GaSb
RTS, whose conduction and valence band diagram is shown in figure 1. In this way we
consider only the processes of interband tunnelling through the light-hole states in the quantum
well, which are dominant for the values of the external bias for which these processes can
occur [11, 12, 16]. We neglect the phonon-assisted tunnelling, which can govern the total
interband tunnelling current density in structures with a wide-gap barrier layer thickness greater
than 100 Å [28]. If thez-axis is normal to the interfaces, then the 8× 8 Hamiltonian can be
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Figure 1. The conduction and valence band diagram of the InAs/AlGaSb/GaSb RTS.
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written as

Ĥ =
(
Ĥ+− Ĥ−−
Ĥ++ Ĥ−+

)
(1)

where

Ĥ±∓ =


EC(z)

√
2iP k̂z/

√
3 −iP k̂z/

√
3 P k̂±

−√2iP k̂z/
√

3 EV (z) 0 0

iP k̂z/
√

3 0 EV (z)−1(z) 0

P k̂∓ 0 0 EV (z)

 (2)

and

Ĥ±± =


0 P k̂±/

√
3
√

2P k̂±/
√

3 0

P k̂±/
√

3 0 0 0√
2P k̂±/

√
3 0 0 0

0 0 0 0

 . (3)

In equations (2), (3),̂k± = ∓i(k̂x ± i ˆ̄ky)/
√

2, k̂x = −i ∂/∂x, ˆ̄ky = −i ∂/∂y + |e|Bx/(h̄c),
k̂z = −i ∂/∂z, e is the electron charge,B is the magnetic field,c is the light velocity,EC(z) and
EV (z) are the conduction and valence band edges,1(z) is the split-off energy, and the value of
P = −h̄2〈S|∂/∂z|Z〉/m0, where|S〉, |Z〉 are the states corresponding to the conduction and
valence bands andm0 is the free-electron mass, is proportional to the interband momentum
matrix element. We have assumed that the magnetic fieldB is parallel to thez-axis, soBz = B,
Bx = 0,By = 0; and the components of vector potential are:Ay = Bx, Ax = Az = 0. We
use the same basis functions as in reference [29]; these are listed in the appendix. The basis
functions and the value ofP are assumed to be the same throughout the whole structure. Also,
we neglected theg-factor of the free electron and the term ¯h2k̂2/(2m0) in the expression for
Ĥii , as in reference [30], which is possible because the electron effective mass is much less than
m0. The existence of these terms in the Hamiltonian leads to spurious unphysical solutions of
the secular equation [31–34], which are now removed. Thus the envelope functionsψi obey
the equations∑

Ĥijψj = Ēψi i = 1, 2, . . . ,8. (4)

In (4)ψi is an envelope function and̄E is the energy. The boundary conditions in the envelope
function approach can be derived directly from the equations for the envelope functions with
position-dependent parameters by means of integration of these equations across an interface
[20, 34–38]. Suppose that equations (4) with the Hamiltonian given by (1)–(3), where
Eg(z) = EC(z)− EV (z) and1(z) are piecewise-constant functions, have finite solutions for
ψi throughout the whole structure including the regions containing the abrupt heterojunctions.
Then integrating each equation of system (4) fromzj − 0 to zj + 0, wherezj is the interface
coordinate, and taking into account the fact thatP is a constant value, we obtain the result that
at the interfaces the following functions are continuous:

ψ1

√
2ψ2 − ψ3 ψ5

√
2ψ6− ψ7. (5)

Since the spurious solutions are removed by means of modification of the Hamiltonian as, for
example, in references [31, 34], the number of boundary conditions is less than the number
of envelope functions and their first derivatives with respect toz. These boundary conditions
provide the conservation of the probability current-density component normal to the interfaces
for the solutions of equation (4) with the Hamiltonian given by (1)–(3), as is shown in section 3.
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The equation system (4) for a bulk material in the case of the absence of an electric field
has two solutions for a given value of the energyĒ and Landau-level indexnwith wave-vector
componentskz = k±z and opposite average values of the spin. For the first solution,ψ1 6= 0,
ψ5 = 0, while for the second solution,ψ5 6= 0, ψ1 = 0 [30]. In the conduction band these
two solutions correspond to the states with spinσ approximately equal to±1/2, respectively.
The dispersionsEn(kz), whereEn = Ē − EV , are given by

En(En − Eg)(En +1)

P 2s(En + 21/3)
− k

±
z

2

s
± 1/3

En + 21/3
= 2n + 1 n = 0, 1, . . .. (6)

In (6), s = |e|B/(h̄c). The corresponding envelope functions can be written as

ψi = φi(x ′) exp(ikyy + ikzz) (7)

wherex ′ = x − x0 (x0 = −ky/s). For the first solution,

φ1 = fn φ2 = −
i
√

2Pk+
z√

3En
fn φ3 =

iPk+
z√

3(En +1)
fn

φ4 = 2nP
√
s√

2En
fn−1 φ5 = 0 φ6 = P

√
s√

6En
fn+1 (8)

φ7 = P
√
s√

3(En +1)
fn+1 φ8 = 0.

Here

fn(x
′) =

{
exp(−sx ′2/2)Hn(

√
sx ′) n > 0

0 n < 0
(9)

whereHn(t) is the Hermite polynomial. For the second solution,

φ1 = 0 φ2 = 2nP
√
s√

6En
fn−1 φ3 = 2nP

√
s√

3(En +1)
fn−1

φ4 = 0 φ5 = fn φ6 = −
i
√

2Pk−z√
3En

fn (10)

φ7 =
iPk−z√

3(En +1)
fn φ8 = P

√
s√

2En
fn+1.

Near the conduction band edge, the nonparabolicity can be neglected. Then the envelopes
ψ1 andψ5, which correspond to the s-type basis functions of the conduction band, are the
solutions of the Schrödinger equation for the values of spin±1/2, respectively, in the case
of the simple effective-mass approximation. Therefore the Landau-level index for the states
in the conduction band with spin approximately equal to 1/2 coincides with the indexn of
the functionfn which defines the functionφ1, while the Landau-level index for the states in
the conduction band with spin approximately equal to−1/2 coincides with the indexn of the
functionfn which defines the functionφ5. Note that equations (6) have spurious solutions if
En ≈ −21/3. These energy levels are significantly lower than the energy interval in which
the interband tunnelling can occur in the structures under consideration, so these solutions are
not taken into account.

The solutions of the Schrödinger equation in the RTS and the transmission coefficients
for the transitions between the states corresponding to various Landau-level indices can be
obtained using the solutions for the wavefunctions in bulk materials defined by (7)–(10) and
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the conditions of continuity at the interfaces of functions (5). If the split-off energy1(z) is
equal to zero, then, for the first solution of the Schrödinger equation for a given indexn,

ψ1 6= 0
√

2ψ2 − ψ3 6= 0 ψ5 = 0
√

2ψ6− ψ7 = 0.

For the second solution of this equation,

ψ1 = 0
√

2ψ2 − ψ3 = 0 ψ5 6= 0
√

2ψ6− ψ7 6= 0.

Then, for a heterostructure for two bulk states with opposite values ofkz corresponding to
Landau-level indexn and spin 1/2 or−1/2, we have only two boundary conditions, which
can be satisfied without mixing the states of different Landau levels or states with different
spin orientations. If1(z) 6= 0, then, for the first solution of the Schrödinger equation,√

2ψ6 − ψ7 6= 0. For the second solution of the Schrödinger equation,
√

2ψ2 − ψ3 6= 0
for n > 0. Since more than two functions (5) are not equal to zero, the boundary conditions
cannot be satisfied without accounting for the mixing effects. The functionsψ2 andψ3 (ψ6 and
ψ7) of leveln with spin along the magnetic field direction and leveln+ 1 with spin opposite to
the magnetic field direction are both proportional tofn (fn+1). Hence in the heterostructure,
due to the spin–orbit interaction, the mixing at the interfaces of the states with opposite spin
orientations of Landau levelsn andn + 1 occurs in accordance with the boundary conditions.
Hence an electron from the state corresponding to Landau-level indexn with spin along the
direction of the magnetic field can tunnel not only into a similar state to the right of the RTS, but
also into the state corresponding to Landau-level indexn+1 with spin opposite to the direction
of the magnetic field. Only the states with Landau-level indexn = 0 and spin opposite to the
direction of the magnetic field are not mixed with other states.

Note that in the framework of the simple effective-mass approximation the term in the
Hamiltonian which describes the spin–orbit interaction is usually neglected. In this case
the mixing of the states with different Landau-level indices in a magnetic field normal to
the interfaces does not exist. For this reason the inter-Landau-level processes with energy
conservation in the RTS with an intraband tunnelling mechanism were explained by elastic-
scattering-assisted processes. In fact, these processes can occur without scattering. Note also
that the authors of reference [39] believe that in the case of an in-plane magnetic field the inter-
Landau-level tunnelling processes without scattering are permitted even in a simple one-band
model in which the spin–orbit interaction is neglected.

3. The interband resonant tunnelling probability and tunnelling current density

The transfer-matrix method [19–21] is an appropriate approach for investigating the interband
resonant tunnelling in structures under external bias in the presence of a magnetic field. In
this case the real potential distribution is replaced by a stepwise-constant one. We calculated
the transfer matrices to obtain the transmission coefficients for the transitions from the states
with different spin orientations corresponding to each value of the Landau-level index. For the
state withn = 0 and spin opposite to the direction of the magnetic field, the envelope function
ψ5, which is a combination of incident and reflected waves with pre-exponent coefficientsA

j

2

andBj2 , respectively, in the sublayerj at z = zj , is given by

ψ5 = Aj2f0(x
′) exp(ikyy + ikzj zj ) +Bj2f0(x

′) exp(ikyy − ikzj zj ). (11)

The other envelopes can easily be obtained from equations (6), (7), (10). Then the coefficients
A
j

2, Bj2 andAj+1
2 , Bj+1

2 for the adjacent sublayersj andj + 1 obey the equation(
A
j

2

B
j

2

)
= Mj

(
A
j+1
2

B
j+1
2

)
. (12)
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The transfer matrixMj at z = zj can be written as

M±j =
1

2

(
[1 + kzj+1Pj+1/(kzj Pj )] exp(−ibjzj ) [1− kzj+1Pj+1/(kzj Pj )] exp(−iajzj )

[1− kzj+1Pj+1/(kzj Pj )] exp(iajzj ) [1 + kzj+1Pj+1/(kzj Pj )] exp(ibjzj )

)
(13)

where

aj = kzj + kzj+1 bj = kzj − kzj+1 (14)

Pj = 2/E(zj ) + 1/(E(zj ) +1(zj )). (15)

In the latter equation,E(zj ) = Ē − EV (zj ). Then the amplitudes of the incident, reflected,
and transmitted wavesA0

2, B0
2, andAN2 are given by(

A0
2

B0
2

)
=

N−1∏
j=0

Mj

(
AN2

0

)
(16)

whereN is the number of steps in the calculation.
If n 6= 0 or the spin of the tunnelling electron is along the direction of the magnetic field,

then the solution of the Schrödinger equation can be composed of the superposition of the
states for whichψ1 6= 0 andψ5 6= 0 corresponding to the values of the Landau-level index of
n andn + 1, respectively. For this solution

ψ1 = Aj1fn(x ′) exp(ikyy + ik+
zj
zj ) +Bj1fn(x

′) exp(ikyy − ik+
zj
zj ) (17)

ψ5 = Aj2fn+1(x
′) exp(ikyy + ik−zj zj ) +Bj2fn+1(x

′) exp(ikyy − ik−zj zj ). (18)

The other envelope functions for a given value of the incident particle energy can be obtained
taking into account (6)–(10). Then the coefficientsAj1,2, Bj1,2 can be obtained from the

coefficientsAj+1
1,2 , Bj+1

1,2 using a 4× 4 transfer matrixMj in the following way:
A
j

1

B
j

1

A
j

2

B
j

2

 = Mj


A
j+1
1

B
j+1
1

A
j+1
2

B
j+1
2

 . (19)

The elements of the 4× 4 transfer matrix can be written as

Mj11 = [1 + k+
zj+1
Pj+1/(k

+
zj
Pj )] exp(−ib+

j zj )/2

Mj12 = [1− k+
zj+1
Pj+1/(k

+
zj
Pj )] exp(−ia+

j zj )/2

Mj13 = [−i
√
s(n + 1)(Qj −Qj+1)/(k

+
zj
Pj )] exp(−ic−j zj )

Mj14 = [−i
√
s(n + 1)(Qj −Qj+1)/(k

+
zj
Pj )] exp(−ic+

j zj )

Mj21 = [1− k+
zj+1
Pj+1/(k

+
zj
Pj )] exp(ia+

j zj )/2

Mj22 = [1 + k+
zj+1
Pj+1/(k

+
zj
Pj )] exp(ib+

j zj )/2

Mj23 = [i
√
s(n + 1)(Qj −Qj+1)/(k

+
zj
Pj )] exp(ic+

j zj )

Mj24 = [i
√
s(n + 1)(Qj −Qj+1)/(k

+
zj
Pj )] exp(ic−j zj )

(20a)



Interband magnetotunnelling in heterostructures 4681

Mj31 = [−i
√
s(Qj −Qj+1)/(2k

−
zj
Pj )] exp(−id−j zj )

Mj32 = [−i
√
s(Qj −Qj+1)/(2k

−
zj
Pj )] exp(−id+

j zj )

Mj33 = [1 + k−zj+1
Pj+1/(k

−
zj
Pj )] exp(−ib−j zj )/2

Mj34 = [1− k−zj+1
Pj+1/(k

−
zj
Pj )] exp(−ia−j zj )/2

Mj41 = [i
√
s(Qj −Qj+1)/(2k

−
zj
Pj )] exp(id+

j zj )

Mj42 = [i
√
s(Qj −Qj+1)/(2k

−
zj
Pj )] exp(id−j zj )

Mj43 = [1− k−zj+1
Pj+1/(k

−
zj
Pj )] exp(ia−j zj )/2

Mj44 = [1 + k−zj+1
Pj+1/(k

−
zj
Pj )] exp(ib−j zj )/2.

(20b)

In equations (20),
a±j = k±zj + k±zj+1

b±j = k±zj − k±zj+1

c±j = k+
zj
± k−zj+1

d±j = k−zj ± k+
zj+1

(21)

Qj = 1/E(zj )− 1/(E(zj ) +1(zj )). (22)

Then the amplitudes of the incident, reflected, and transmitted wavesA0
1,2, B0

1,2, andAN1,2 can
be obtained from the following equations:

A0
1

B0
1

A0
2

B0
2

 = N−1∏
j=0

Mj


AN1

0

AN2

0

 . (23)

The elementsMj13, Mj14, Mj23, Mj24, Mj31, Mj41, Mj32, Mj42 of the transfer matrix,
equations (20), describe the mixing of the states of different Landau-level indices. Each of these
elements is proportional to

√
B. Therefore the probability of inter-Landau-level transitions is

considerable only in sufficiently strong magnetic fields. Each of these elements of the transfer
matrix, equations (20), is equal to zero if1(z) = 0, because in accordance with (22)Qj and
Qj+1 are equal to zero. Hence the probability of inter-Landau-level transitions increases with
the spin–orbit interaction increasing. In the case of an electron tunnelling between bands in
a RTS with type I heterojunctions, if|E(z)| � 1(z), the probability of inter-Landau-level
transitions is negligible. For example, in the GaAs/AlGaAs RTS with contacts doped by
donors, the intra-Landau-level transitions of conduction band electrons are dominant. In the
case of an electron tunnelling between bands in a RTS with type II heterojunctions, such as the
InAs/AlGaSb/GaSb RTS, if|E(z)| � 1(z) in the barrier, the probability of inter-Landau-level
transitions is considerable in sufficiently strong magnetic fields.

The equation for the probability-flux-density component normal to the interfaces,jz, in
the presence of a magnetic field, which is used to calculate the transmission coefficients, is
obtained in a conventional way (see, for example, reference [40]) from the equation

∂

∂t

∑
i

|ψi |2 +∇ · j = 0. (24)

Using the time-dependent equations for envelope functions, we obtain
∂

∂t

∑
i

|ψi |2 = i

h̄

∑
ij

(ψiĤ
∗
ijψ
∗
j − ψ∗i Ĥijψj ). (25)

Then the equation forjz is derived using (1)–(3), (24), (25) and can be written as

jz = iP

h̄
√

3
[ψ1(
√

2ψ∗2 − ψ∗3 )− ψ∗1 (
√

2ψ2 − ψ3) +ψ5(
√

2ψ∗6 − ψ∗7 )− ψ∗5 (
√

2ψ6− ψ7)].

(26)
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Taking into account the boundary conditions, we obtain thatjz is continuous at the interfaces.
Then the coefficients of transmission for transitions between the different states can be obtained
as the ratios of the corresponding probability flux densities of the interfaces averaged over the
coordinatex for the transmitted and incident waves〈jNzk 〉 and〈j0

zl〉, and are given by

Tkl = 〈jNzk 〉/〈j0
zl〉 k, l = 1, 2 (27)

wherek (l) = 1 corresponds to the wave with spin along the direction of the magnetic field and
Landau-level indexn, k (l) = 2 corresponds to the opposite spin orientation and Landau-level
index n + 1 for n > 0. If for the incident wave with spin opposite to the direction of the
magnetic field the Landau-level index is equal to zero, then only the coefficientT22 6= 0. For
the quantities〈j0,N

z1 〉, 〈j0,N
z2 〉 corresponding to the Landau-level indicesn andn+1, respectively,

we obtain

〈j0,N
z1 〉 ∼ 2nn!|A0,N

1 |2k+
z0,N
P0,N

〈j0,N
z2 〉 ∼ 2n+1(n + 1)!|A0,N

2 |2k−z0,N
P0,N

(28)

where the amplitudes of the waves|A0,N
1,2 | are given by (23) forn > 0. If n + 1 = 0, then

the amplitudes of the envelope functions for the states with zero Landau-level index and spin
opposite to the direction of the magnetic field,|A0,N

2 |, are given by (16).
Using the transmission coefficientsTkl , the total interband tunnelling current density,

which is the sum of the different interband tunnelling current components, can be calculated
in the following way:

j = |e|LyLz
V (2π)2h̄

∑
k,l,n

∫
dky dkz Tkl(f1− f2)

∂En

∂kz
. (29)

In this equation,V = LxLyLz, Li is a normalizing length,En(kz) is the dispersion law for
electrons in the left-hand contact layer,f1, f2 are the occupations of the states to the left and
to the right of the tunnelling structure, respectively. The total current density is composed of
the current-density components corresponding to the transitions between the initial and final
states with various values of Landau-level index and various spin orientations. Taking into
account that ∫

dky = s
∫ Lx/2

−Lx/2
dx0 = Lxs (30)

we obtain for zero temperature and positive external biasV

j = |e|s
(2π)2h̄

∑
k,l,n

∫ EF1

max(0,EF2)

dEn Tkl (31)

whereEF1, EF2 are the Fermi levels to the left and to the right of the tunnelling structure,
respectively. For a symmetrical structure,EF1 = EF , EF2 = EF − |e|V , where the value of
EF is related to the electron concentrationNe in the contacts in the following way:

Ne = s

(2π)2
∑
n,σ

∫ EF

0
dEn

∂kz

∂En
. (32)

Here the values ofσ correspond to two different spin orientations. We investigated the
peculiarities of theI–V characteristics of a RTS with an interband tunnelling mechanism using
equations (31), (32), and the formulae derived for the transmission coefficient calculation taking
into account the quantization of the particle spectrum in a magnetic field and inter-Landau-level
transitions.
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4. Results and discussion

The results of the calculation of the transmission coefficients versus incident particle energy
E = Ē−EC for the InAs/AlGaSb/GaSb RTS with two InAs contact layers, two 25 Å AlGaSb
barriers, and a 70 Å GaSb quantum well in a magnetic field of 15 T for the values of external
bias 0.03, 0.05, and 0.07 V are shown in figures 2(a), 2(b), and 2(c), respectively. We have
used the same parameters as in reference [29]. Curves 1 in these figures correspond to the
transitions from the electron states to the left of the double-barrier structure with spin opposite
to the direction of the magnetic field corresponding to the valuen = 0 into similar states to the
right of it. Curves 2 represent the transmission coefficients versus energy for the transitions
from the states in the conduction band of the left-hand InAs layer corresponding to the Landau-
level indexn = 0 and spin along the direction of the magnetic field into similar states to the
right of the tunnelling structure. Curves 3 represent the transmission coefficients versus energy
for the transitions from the states in the conduction band of the left-hand InAs layer with the
Landau-level indexn = 0 and spin along the direction of the magnetic field into the states
to the right of the double-barrier structure with Landau-level indexn = 1 and opposite spin
orientation. In all of these processes the resonant interband tunnelling occurs through the
light-hole states in the valence band quantum well. The calculations showed that the transition
probability for the processes with the changing Landau-level index can be comparable with
the transition probability for the processes with conservation of the Landau-level index. Due
to strong mixing of the quasibound states in the valence band quantum well corresponding
to the valuesn = 0 andn = 1, resonant tunnelling in the cases of curves 2 and 3 occurs
through the two states in the quantum well with different spin orientations, which correspond
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Figure 2. Transmission coefficients versus incident particle energy atB = 15 T for the following
values of the voltageV : (a)V = 0.03 V; (b)V = 0.05 V; (c)V = 0.07 V.
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to the same subband of size quantization. For this reason the dependencies of the tunnelling
probability versus energy have two peaks. The positions of different peaks of the tunnelling
probability depend significantly on the voltage across the tunnelling structure. The values of
the quasibound-state energy of the levels in the well drop with the voltage increasing, which
results in the corresponding shifts in the peak positions.

To investigate the magnetic field dependence of the transmission coefficients, we have
calculated the functionsTkl(E) atB = 18 T (see figure 3, where panels (a), (b), (c) correspond
to the same values of external bias as in figure 2 and curves 1, 2, 3 correspond to the same
tunnelling processes as curves 1, 2, 3 in figure 2, respectively). The cyclotron energy for the
states in the quantum well enlarges with the increase of the magnetic field. For this reason
the energy separation between maxima of the tunnelling probability increases. Due to great
energy separation between the level withn = 0 and spin along the magnetic field direction
and the level withn = 1 and spin opposite to the magnetic field direction in the InAs contact
layers, the processes of resonant tunnelling between these levels are forbidden at external
biasV = 0.03 V. For this reason, curve 3 is not shown in figure 3(a). With the increase of
the external bias, the level in the right-hand contact layer withn = 1 and spin opposite to
the magnetic field direction becomes lower than the quasibound levels in the valence band
quantum well, and interband resonant tunnelling into the states with Landau-level indexn = 1
can occur. The position of each maximum shifts to the left with voltage increasing, because
the difference between the energy of the level in the well which corresponds to this maximum
and the conduction band edge of the left-hand InAs layer decreases. At some value of the bias,
the resonant interband tunnelling through a given quasibound state becomes forbidden. Then
the corresponding interband tunnelling current component drops.
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Figure 3. Transmission coefficients versus incident particle energy atB = 18 T for the following
values of the voltageV : (a)V = 0.03 V; (b)V = 0.05 V; (c)V = 0.07 V.
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The calculatedI–V characteristics of the InAs/AlGaSb/GaSb RTS considered, with the
donor concentration in the InAs contact layers equal to 2×1017cm−3 atB = 15 T andB = 18 T,
are shown in figures 4(a) and 4(b), respectively. Curve 1 in each figure corresponds to the total
current density. Curves 2 and 3 describe the dependencies of the current-density components
on voltage for the transitions with conservation of the Landau-level index between the states
with n = 0 and spin opposite and along the magnetic field direction, respectively. Curve 4 in
each figure corresponds to the spin-flip processes with the Landau-level index changing from
0 to 1. The calculations showed that the contribution to the total current density of the spin-
flip processes without Landau-level-index conservation is comparable to the contribution of
the processes with Landau-level-index conservation. The dependence of the current-density
component on the applied voltage atB = 18 T for the transitions between the states with
n = 0 and spin along the magnetic field direction (curve 3 in figure 4(b)) has two peaks,
because the interband tunnelling processes may occur through two quasibound states in the
quantum well with different spin orientations and Landau-level indices 0 and 1. For this reason
the dependence of the total current density on the applied voltage also has an additional peak. A
very small additional peak can also be seen in curve 3 in figure 4(a), calculated atB = 15 T. The
values of the peak voltage decrease with the magnetic field increasing, because the quasibound
levels in the well drop with respect to the Landau levels in the left-hand contact layer. A similar
dependence was obtained in the experimental investigations of theI–V characteristics of the
GaSb/AlSb/InAs RTS with GaSb contacts [3,4]. We believe that the authors of references [3,4]
did not observe the additional peaks on theI–V characteristics caused by the inter-Landau-
level interband tunnelling processes for a magnetic field parallel to the current atB < 15 T
because of the weak mixing of the states of different Landau levels for small values of the
magnetic field. The additional peak at 15 T may be associated with the interband tunnelling
processes with the Landau-level index changing without scattering. Probably, in the case of
an in-plane magnetic field, the inter-Landau-level interband tunnelling processes will also be
observable in magnetic fields greater than those utilized in experiments [5,7].
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Figure 4. The total interband resonant tunnelling current density and tunnelling current components
corresponding to transitions between the states of various Landau levels versus the voltage across
the double-barrier structure for the following values ofB: (a)B = 15 T; (b)B = 18 T.
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Note that we considered the interband resonant tunnelling in a RTS with InAs contacts
and a GaSb quantum well in a magnetic field normal to the interfaces, while this effect
was investigated experimentally for a GaSb/AlSb/InAs RTS with GaSb contacts and an InAs
quantum well. In the latter case, the GaSb contacts are doped by acceptors and the heavy-
hole states should be taken into account to calculate the Fermi levels in the contacts and
the interband tunnelling current. With this aim, the influence of higher bands should be
considered using perturbation theory, which results in additional terms in the Hamiltonian. In
this model, mixing at the interfaces of the electron (light-hole) and heavy-hole states occurs,
so the electron from the conduction band state can tunnel not only into the light-hole state
but also into the heavy-hole state in the valence band in a RTS made from InAs, AlSb, and
GaSb. This results in the additional peaks of the tunnelling probability for nonzero values of
the lateral wave vector (see, for example, references [10–12, 17]). Moreover the interband
tunnelling through the heavy-hole states in the well influences the observed values of the
valley current in the InAs/AlSb/GaSb RTS considerably, as was shown experimentally [6] and
theoretically [12,16]. In the magnetic field, the mixing of the electron (light-hole) states with
Landau-level indicesn andn + 1 and heavy-hole states with Landau-level indicesn − 1 and
n + 2 with different spin orientations occurs even in a bulk material [21, 41]. In the six-band
model used in references [17, 36], there are four such mixed states for any numbern > 1.
(The authors of reference [21] describe all of these mixed states using the single Landau-level
index n.) In the conduction band, only two of these four states (electron states) have real
values ofkz for sufficiently large energies. One of these two states can be approximately
characterized by Landau-level indexn and spin 1/2; the second state can be approximately
characterized by Landau-level indexn + 1 and spin−1/2 in the case of small mixing due
to the influence of higher bands. The other states have imaginary wave vectorskz in the
conduction band and correspond to the heavy-hole states. Due to the boundary conditions,
mixing of these four states at the interfaces occurs, so an electron from the conduction
band state to the left of the InAs/AlGaSb/GaSb RTS with the Landau-level indexn and
spin 1/2 can tunnel at different values of voltage through two light-hole and two heavy-
hole states in the well of each subband of size quantization into the state in the conduction
band to the right of the RTS with Landau-level indexn and spin 1/2 or into the state with
Landau-level indexn + 1 and spin−1/2, which may lead to additional peculiarities of the
dependenciesTkl(E) andj (V ). These interband tunnelling processes will be considered in
detail elsewhere.

5. Conclusions

In summary, we have investigated theoretically the interband resonant magnetotunnelling
in double-barrier semiconductor heterostructures using the eight-band Kane model. The
equations for calculation of the tunnelling current components for the interband transitions
from the states with different values of Landau-level index and the total interband tunnelling
current density have been derived for the magnetic field normal to the interfaces. TheI–V
characteristics of the double-barrier interband resonant tunnelling heterostructures have been
calculated taking into account the inter-Landau-level transitions. It was shown that the
contribution to the total current density of the spin-flip processes with a changing Landau-
level index, which can occur without scattering on phonons, impurities, or defects, due to
the spin–orbit interaction, is significant. These processes result in the additional peaks of the
dependencies of the tunnelling probability on the incident particle energy and on theI–V
characteristics of the InAs/AlGaSb/GaSb RTS.
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Appendix

The set of basis functions used is the following:

u1 = |s1/2,1/2〉 = |iS↑〉
u2 = |p3/2,1/2〉 = (2/3)1/2|p0↑〉 + (1/3)1/2|p+↓〉
u3 = |p1/2,1/2〉 = −(1/3)1/2|p0↑〉 + (2/3)1/2|p+↓〉
u4 = |p3/2,3/2〉 = |p+↑〉
u5 = |s1/2,−1/2〉 = |iS↓〉
u6 = |p3/2,−1/2〉 = (2/3)1/2|p0↓〉 + (1/3)1/2|p−↑〉
u7 = |p1/2,−1/2〉 = −(1/3)1/2|p0↓〉 + (2/3)1/2|p−↑〉
u8 = |p3/2,−3/2〉 = |p−↓〉

where|p0〉 = i|Z〉, |p±〉 = ∓i|X ± iY 〉/√2, |s1/2,±1/2〉 are the electron states,|p3/2,±3/2〉 are
the heavy-hole states,|p3/2,±1/2〉 are the light-hole states, and|p1/2,±1/2〉 are the states of the
split-off band.
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